nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.37 29-37
保定上空可降水量特征及其与降水的关系
基金项目(Foundation): 保定市科技计划项目“保定GPS大气可降水量特征及其与降水的关系研究”(2211ZN001)
邮箱(Email):
DOI: 10.16468/j.cnki.issn1004-0366.2025.03.004
摘要:

为深入了解河北省保定市上空水汽的时空分布,基于2018年12月—2021年11月保定市6个地面观测站逐时降水和地基全球定位系统(GPS)可降水量(Pwv)以及第五代欧洲再分析资料(ERA5),采用统计学方法对各代表站Pwv时间变化及其与降水的关系进行了深入分析。结果表明:GPS-Pwv月际变化存在明显的单峰型,海拔与GPS-Pwv存在反向关系。季节不同GPS-Pwv距平日变化有差异,春季,西北部山区和平原代表站GPS-Pwv平均距平日变化均为双峰结构,浅山区代表站为多峰结构;夏季,GPS-Pwv平均距平日变化都以单峰结构为主,各站出现最大变幅;秋季,浅山区和平原代表站为多峰结构,西北部山区代表站和春季类似;冬季各站GPS-Pwv平均距平日变化平缓,各站出现最小变幅。降水与GPS-Pwv存在密切关系,GPS-Pwv峰值出现时刻比降水开始时间滞后0~2 h发生的频次最高,其次是超前降水1~3 h。受不同天气系统影响,降水期间Pwv大小和降水结束之后Pwv变化趋势均不相同,降水效率与Pwv峰值高度相关。此研究不仅揭示了本地水汽的时空变化特征,而且为降水预报提供了有利的技术支撑。

Abstract:

In order to understand the spatial and temporal distribution of water vapor over Baoding, based on the hourly precipitation and ground-based GPS precipitable water vapor of six ground observation stations in Baoding from December 2018 to November 2021 and ERA5 reanalysis data, the time variation of Pwv and its relationship with precipitation at each representative station were analyzed by statistical method.The results show that the inter-monthly variation of GPS-Pwv is unimodal, there is an inverse relationship between altitude and GPS-Pwv.The distance variation of GPS-Pwv is different in different seasons.In spring, the average distance variation of GPS-Pwv in mountainous areas of northwest Baoding and plain areas shows a bimodal structure, while that of representative stations in shallow mountainous areas shows a multi-modal structure.In summer, the average distance variation of GPS-Pwv is mainly unimodal, and the maximum variation amplitude appears at each station.In autumn, the average distance variation of GPS-Pwv in shallow mountainous and plain area are multi-peak structure, and the average distance variation of GPS-Pwv in the northwest mountain area is similar to the spring.In winter, the distance variation of GPS-Pwv in every stations changes gently, and the minimum variation occurs at each station.There is a close relationship between precipitation and GPS-Pwv, the peak time of GPS-Pwv is the most frequent occurrence 0~2 hours after the beginning time of precipitation, followed by the advance precipitation 1~3 hours.Influenced by different weather systems, the Pwv magnitude during precipitation and the Pwv variation trend after precipitation are different, the precipitation efficiency is highly correlated with the peak value of Pwv.This study not only reveals the spatio-temporal variation characteristics of local water vapor, but also provides favorable technical support for precipitation forecast.

参考文献

[ 1 ] 马新平,尚可政,李佳耘,等.1981—2010 年中国西北地区东部大气可降水量的时空变化特征[J].中国沙漠,2015,35(2):448-455.

[ 2 ] 王小亚,朱文耀,严豪健,等.地面 GPS 探测大气可降水量的初步结果[J].大气科学,1999,23(5):605-612.

[ 3 ] 黄振,梁宏,黄艇.大连地区地基 GPS 水汽自动处理系统设计[J].气象科技,2013,41(1):83-87.

[ 4 ] DUANN J,BEVIS M,FANG P,et al.GPS meteorology:directestimation of the absolute value of precipitable water[J].Journal of Applied Meteorology,1996,35(6):830-838.

[ 5 ] 李国平,黄丁发.GPS气象学研究及应用的进展与前景[J].气象科学,2005,25(6):651-661.

[ 6 ] 丁金才.GPS气象学及其应用[M].北京:气象出版社,2009.

[ 7 ] 翟盘茂,周琴芳.中国大气水分气候变化研究[J].应用气象学报,1997(3):342-351.

[ 8 ] 蔡英,钱正安,吴统文,等.青藏高原及周围地区大气可降水量的分布变化与各地多变的降水气候[J].高原气象,2004(1):1-10.

[ 9 ] 王宇虹,徐国强,贾丽红,等.太行山对北京“7·21”特大暴雨的影响及水汽敏感性分析的数值研究[J].气象,2015,41(4):389-400.

[10] 杨霞,周鸿奎,赵克明,等.1991—2018年新疆夏季小时极端强降水特征[J].高原气象,2020,39(4):762-773.

[11] 邹进上,刘惠兰.我国平均水汽含量分布的基本特点及其控制因子[J].地理学报,1981,36(4):377-391.

[12] 楚艳丽,郭英华,张朝林,等.地基GPS水汽资料在北京“7·10”暴雨过程研究中的应用[J].气象,2007,33(12):16-22.

[13] 张端禹,王明欢,陈波.2008年8月末湖北连续大暴雨的水汽输送特征[J].气象,2010,36(2):48-53.

[14] 徐爽,胡鹏宇,贾越,等.2020—2021年沈阳地区4次短时强降水过程的大气可降水量变化对比分析[J].气象与环境学报,2023,39(2):28-34.

[15] 于碧馨,刘晶,安大维,等.2017—2019年南疆西部和昆仑山北坡 GPS 大气可降水量变化特征[J].沙漠与绿洲气象,2022,16(6):25-33.

[16] 杨莲梅,王世杰,史玉光,等.乌鲁木齐夏季强降水过程GPS-PWV的演变特征[J].高原气象,2012,31(5):1348-1355.

[17] 马思琪,周顺武,王烁,等.基于GPS资料分析西藏中东部夏季可降水量日变化特征[J].高原气象,2016,35(2):318-328.

[18] 杨露华,叶其欣,邬锐,等.基于GPS/Pwv资料的上海地区2004年一次夏末暴雨的水汽输送分析[J].气象科学,2006,26(5):502-508.

[19] 吴建军,王鑫,吕达仁,等.北京可降水量变化特征的地基GPS观测与分析[J].南京气象学院学报,2007,30(3):377-382.

[20] 陈小雷,景华,仝美然,等.地基GPS遥测大气可降水量在天气分析诊断中的应用[J].气象,2007,33(6):19-24.

[21] 李育,徐安伦,董保举.大理不同云系降水中GPS可降水量的变化特征[J].高原山地气象研究,2023,43(1):90-94.

[22] 曹云昌,方宗义,夏青.GPS遥感的大气可降水量与局地降水关系的初步分析[J].应用气象学报,2005(1):54-59.

[23] 石小龙,尚伦宇,尹远渊,等.大连地区GPS反演大气可降水量的变化特征[J].高原气象,2014,33(6):1648-1653.

[24] 潘卫华,余永江,罗艳艳,等.基于地基GPS大气可降水量的福建水汽资源时空分布特征分析[J].干旱气象,2021,39(4):577-584.

[25] 程鹏,王研峰,罗汉,等.基于GPS的河西走廊干旱区大气可降水量特征[J].高原气象,2022,41(5):1281-1290.

[26] 海云莎,孙绩华,陈新梅.2007—2010年云南GPS观测大气可降水量特征分析[J].云南地理环境研究,2011,23(2):78-84.

[27] 付志康,万蓉,于胜杰,等.湖北地基GPS大气可降水量变化特征分析及应用[J].气象科学,2017,37(4):553-560.

[28] 巩宁刚,孙美平,闫露霞,等.1979—2016年祁连山地区大气水汽含量时空特征及其与降水的关系[J].干旱区地理,2017,40(4):762-771.

[29] BASTIN S C CHAMPOLLION O BOCK,et al.Diurnal cycle of water vapor as documented by a dense GPS network in a coastal area during ESCOMPTE IOP2[J].J Appl Meteor Climatol,2007(46):167-181.

[30] IWASAKI H Y OHBAYASHI.Case study on the distribution of precipitable water associated with local circulation using the split-window data of a NOAA satellite[J].J Meteor Soc Japan,1999(77):711-719.

基本信息:

DOI:10.16468/j.cnki.issn1004-0366.2025.03.004

中图分类号:P426.6

引用信息:

[1]马鸿青,董疆南,徐义国等.保定上空可降水量特征及其与降水的关系[J].甘肃科学学报,2025,37(03):29-37.DOI:10.16468/j.cnki.issn1004-0366.2025.03.004.

基金信息:

保定市科技计划项目“保定GPS大气可降水量特征及其与降水的关系研究”(2211ZN001)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文