nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.37 1-6+21
基于AdaBoost算法的青藏地区滑坡位移监测及预测研究
基金项目(Foundation): 青海省科技厅基础研究项目(2023-ZJ-705)
邮箱(Email): 15500507807@126.com;
DOI: 10.16468/j.cnki.issn1004-0366.2025.02.001
摘要:

为了探究青藏高原地区滑坡位移特征并掌握山坡的安全状况,采用AdaBoost算法研究斜坡位移、降雨量以及土壤含水率之间的关系,并进一步对斜坡变形位移进行预测。结果表明:监测区域每年的降雨量呈现倒V形分布,斜坡位移量整体呈现增大趋势;每年二、三月气温升高,受地表积雪积冰融化影响,不同深度的土壤含水率与降雨量的关系复杂。斜坡位移与土壤含水率呈现正相关关系;斜坡不同位置位移受不同深度土壤含水率的影响程度不同。基于监测数据训练AdaBoost回归模型以预测斜坡位移的方法取得了不错的效果,能够对未来15 d内的位移进行预测,研究成果能够为称多县的斜坡位移预测与安全评估提供参考。

Abstract:

In order to explore the characteristics of landslide displacement in Chengduo County of QinghaiTibet Plateau and grasp the safety status of slopes,AdaBoost algorithm was used as a new idea to analyze the relationship between cumulative displacement of slopes,rainfall and soil water content at different depths.The results show that the annual rainfall in the monitoring area presents an inverted V-shape distribution,and the displacement of the slope shows an overall increasing trend.Due to the melting of snow and ice on the surface in February and March every year,the relationship between the soil water content at different depths and the rainfall is unclear.The displacement of slope is affected by soil water content,showing a significant positive correlation.The displacement at different positions of slopes is affected differently by soil water content at different depths.The AdaBoost regression model trained on monitoring data has achieved good results in predicting slope displacement,and can predict displacement within the next 15 days.The research results can provide reference for slope displacement prediction and safety assessment in the Chengduo County area.

参考文献

[1]崔鹏,贾洋,苏凤环,等.青藏高原自然灾害发育现状与未来关注的科学问题[J].中国科学院院刊,2017,32(9):985-992.

[2]杨志华,郭长宝,吴瑞安,等.青藏高原巴塘断裂带地震滑坡危险性预测研究[J].水文地质工程地质,2021,48(5):91-101.

[3]YAO X,LI L,ZHANG Y,et al.Types and characteristics of slow-moving slope geo-hazards recognized by TS-InSAR along Xianshuihe active fault in the eastern Tibet Plateau[J].Natural Hazards,2017,88(3):1727-40.

[4]刘秋强,杜岩,郭富赟,等.青藏高原东端甘肃舟曲牙豁口滑坡复活机理研究[J].灾害学,2021,36(2):113-117.

[5]刘筱怡,张永双,郭长宝,等.川西鲜水河呷拉宗古滑坡发育特征与形成演化过程[J].地质学报,2019,93(7):1767-1777.

[6]赵彬如,陈恩泽,戴强,等.基于水文-气象阈值的区域降雨型滑坡预测研究[J].测绘学报,2022,51(10):2216-2225.

[7]胡磊,胡玉乾,孙鹏,等.藏东南地区降雨型滑坡致灾阈值及滑坡危险性量化分析[J].灾害学,2021,36(4):194-199.

[8]郭睿,黄张裕,王尚祺,等.结合CEEMDAN的LSTM模型在滑坡变形预报中的应用[J].甘肃科学学报,2022,34(2):5-10.

[9]王佳,朱鸿鹄,叶霄,等.考虑时滞效应的库区滑坡位移预测:以新铺滑坡为例[J].工程地质学报,2022,30(5):1609-1619.

[10]邓李政,袁宏永,张鸣之,等.滑坡变形监测预警技术研究进展[J].清华大学学报(自然科学版),2023,63(6):849-864.

[11]张勤,白正伟,黄观文,等.GNSS滑坡监测预警技术进展[J].测绘学报,2022,51(10):1985-2000.

[12]宿林,张帅.基于GNSS的滑坡自动化监测应用分析[J].地理空间信息,2023,21(2):122-124,152.

[13]张晓明,曹国清,陈增强,等.基于AdaBoost-PSO-ELM算法的滑坡位移预测研究[J].电子技术应用,2019,45(2):84-87,92.

[14]周超,殷坤龙,曹颖,等.基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价[J].地球科学,2020,45(6):1865-1876.

[15]LUO X,WANG C.Prediction method of landslide geological hazard based on AdaBoost model[J].Journal of Physics:Conference Series,2021,1966(1):012019.

[16]TRAN Q C,MINH D D,JAAFARI A,et al.Novel ensem ble landslide predictive models based on the hyper pipes algorithm:a case study in the Nam Dam Commune,Vietnam[J].Applied Sciences,2020,10(11):10113710.

[17]YU H W,PEI W J,ZHANG J Y,et al.Landslide susceptibility mapping and driving mechanisms in a vulnerable region based on multiple machine learning models[J].Remote Sensing,2023,15(7):15071886.

[18]韵海霞.青藏高原典型药用植物区域差异研究及生态适宜性评价[D].西宁:青海师范大学,2021

[19]杨文才.青藏高寒草甸生态系统健康评价[D].兰州:甘肃农业大学,2010.

[20]倪九派,高明,魏朝富,等.土壤含水率对浅层滑坡体不同层次土壤抗剪强度的影响[J].水土保持学报,2009,23(6):48-50.

基本信息:

DOI:10.16468/j.cnki.issn1004-0366.2025.02.001

中图分类号:P642.22

引用信息:

[1]蔡忠周,罗少辉,张继红等.基于AdaBoost算法的青藏地区滑坡位移监测及预测研究[J].甘肃科学学报,2025,37(02):1-6+21.DOI:10.16468/j.cnki.issn1004-0366.2025.02.001.

基金信息:

青海省科技厅基础研究项目(2023-ZJ-705)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文